// stb_dxt.h - v1.04 - DXT1/DXT5 compressor - public domain // original by fabian "ryg" giesen - ported to C by stb // use '#define STB_DXT_IMPLEMENTATION' before including to create the implementation // // USAGE: // call stb_compress_dxt_block() for every block (you must pad) // source should be a 4x4 block of RGBA data in row-major order; // A is ignored if you specify alpha=0; you can turn on dithering // and "high quality" using mode. // // version history: // v1.04 - (ryg) default to no rounding bias for lerped colors (as per S3TC/DX10 spec); // single color match fix (allow for inexact color interpolation); // optimal DXT5 index finder; "high quality" mode that runs multiple refinement steps. // v1.03 - (stb) endianness support // v1.02 - (stb) fix alpha encoding bug // v1.01 - (stb) fix bug converting to RGB that messed up quality, thanks ryg & cbloom // v1.00 - (stb) first release // // LICENSE // // This software is dual-licensed to the public domain and under the following // license: you are granted a perpetual, irrevocable license to copy, modify, // publish, and distribute this file as you see fit. #ifndef STB_INCLUDE_STB_DXT_H #define STB_INCLUDE_STB_DXT_H // compression mode (bitflags) #define STB_DXT_NORMAL 0 #define STB_DXT_DITHER 1 // use dithering. dubious win. never use for normal maps and the like! #define STB_DXT_HIGHQUAL 2 // high quality mode, does two refinement steps instead of 1. ~30-40% slower. void stb_compress_dxt_block(unsigned char *dest, const unsigned char *src, int alpha, int mode); #define STB_COMPRESS_DXT_BLOCK #ifdef STB_DXT_IMPLEMENTATION // configuration options for DXT encoder. set them in the project/makefile or just define // them at the top. // STB_DXT_USE_ROUNDING_BIAS // use a rounding bias during color interpolation. this is closer to what "ideal" // interpolation would do but doesn't match the S3TC/DX10 spec. old versions (pre-1.03) // implicitly had this turned on. // // in case you're targeting a specific type of hardware (e.g. console programmers): // NVidia and Intel GPUs (as of 2010) as well as DX9 ref use DXT decoders that are closer // to STB_DXT_USE_ROUNDING_BIAS. AMD/ATI, S3 and DX10 ref are closer to rounding with no bias. // you also see "(a*5 + b*3) / 8" on some old GPU designs. // #define STB_DXT_USE_ROUNDING_BIAS #include #include #include // memset static unsigned char stb__Expand5[32]; static unsigned char stb__Expand6[64]; static unsigned char stb__OMatch5[256][2]; static unsigned char stb__OMatch6[256][2]; static unsigned char stb__QuantRBTab[256+16]; static unsigned char stb__QuantGTab[256+16]; static int stb__Mul8Bit(int a, int b) { int t = a*b + 128; return (t + (t >> 8)) >> 8; } static void stb__From16Bit(unsigned char *out, unsigned short v) { int rv = (v & 0xf800) >> 11; int gv = (v & 0x07e0) >> 5; int bv = (v & 0x001f) >> 0; out[0] = stb__Expand5[rv]; out[1] = stb__Expand6[gv]; out[2] = stb__Expand5[bv]; out[3] = 0; } static unsigned short stb__As16Bit(int r, int g, int b) { return (stb__Mul8Bit(r,31) << 11) + (stb__Mul8Bit(g,63) << 5) + stb__Mul8Bit(b,31); } // linear interpolation at 1/3 point between a and b, using desired rounding type static int stb__Lerp13(int a, int b) { #ifdef STB_DXT_USE_ROUNDING_BIAS // with rounding bias return a + stb__Mul8Bit(b-a, 0x55); #else // without rounding bias // replace "/ 3" by "* 0xaaab) >> 17" if your compiler sucks or you really need every ounce of speed. return (2*a + b) / 3; #endif } // lerp RGB color static void stb__Lerp13RGB(unsigned char *out, unsigned char *p1, unsigned char *p2) { out[0] = stb__Lerp13(p1[0], p2[0]); out[1] = stb__Lerp13(p1[1], p2[1]); out[2] = stb__Lerp13(p1[2], p2[2]); } /****************************************************************************/ // compute table to reproduce constant colors as accurately as possible static void stb__PrepareOptTable(unsigned char *Table,const unsigned char *expand,int size) { int i,mn,mx; for (i=0;i<256;i++) { int bestErr = 256; for (mn=0;mn> 4)]; ep1[0] = bp[ 0] - dp[ 0]; dp[ 4] = quant[bp[ 4] + ((7*ep1[0] + 3*ep2[2] + 5*ep2[1] + ep2[0]) >> 4)]; ep1[1] = bp[ 4] - dp[ 4]; dp[ 8] = quant[bp[ 8] + ((7*ep1[1] + 3*ep2[3] + 5*ep2[2] + ep2[1]) >> 4)]; ep1[2] = bp[ 8] - dp[ 8]; dp[12] = quant[bp[12] + ((7*ep1[2] + 5*ep2[3] + ep2[2]) >> 4)]; ep1[3] = bp[12] - dp[12]; bp += 16; dp += 16; et = ep1, ep1 = ep2, ep2 = et; // swap } } } // The color matching function static unsigned int stb__MatchColorsBlock(unsigned char *block, unsigned char *color,int dither) { unsigned int mask = 0; int dirr = color[0*4+0] - color[1*4+0]; int dirg = color[0*4+1] - color[1*4+1]; int dirb = color[0*4+2] - color[1*4+2]; int dots[16]; int stops[4]; int i; int c0Point, halfPoint, c3Point; for(i=0;i<16;i++) dots[i] = block[i*4+0]*dirr + block[i*4+1]*dirg + block[i*4+2]*dirb; for(i=0;i<4;i++) stops[i] = color[i*4+0]*dirr + color[i*4+1]*dirg + color[i*4+2]*dirb; // think of the colors as arranged on a line; project point onto that line, then choose // next color out of available ones. we compute the crossover points for "best color in top // half"/"best in bottom half" and then the same inside that subinterval. // // relying on this 1d approximation isn't always optimal in terms of euclidean distance, // but it's very close and a lot faster. // http://cbloomrants.blogspot.com/2008/12/12-08-08-dxtc-summary.html c0Point = (stops[1] + stops[3]) >> 1; halfPoint = (stops[3] + stops[2]) >> 1; c3Point = (stops[2] + stops[0]) >> 1; if(!dither) { // the version without dithering is straightforward for (i=15;i>=0;i--) { int dot = dots[i]; mask <<= 2; if(dot < halfPoint) mask |= (dot < c0Point) ? 1 : 3; else mask |= (dot < c3Point) ? 2 : 0; } } else { // with floyd-steinberg dithering int err[8],*ep1 = err,*ep2 = err+4; int *dp = dots, y; c0Point <<= 4; halfPoint <<= 4; c3Point <<= 4; for(i=0;i<8;i++) err[i] = 0; for(y=0;y<4;y++) { int dot,lmask,step; dot = (dp[0] << 4) + (3*ep2[1] + 5*ep2[0]); if(dot < halfPoint) step = (dot < c0Point) ? 1 : 3; else step = (dot < c3Point) ? 2 : 0; ep1[0] = dp[0] - stops[step]; lmask = step; dot = (dp[1] << 4) + (7*ep1[0] + 3*ep2[2] + 5*ep2[1] + ep2[0]); if(dot < halfPoint) step = (dot < c0Point) ? 1 : 3; else step = (dot < c3Point) ? 2 : 0; ep1[1] = dp[1] - stops[step]; lmask |= step<<2; dot = (dp[2] << 4) + (7*ep1[1] + 3*ep2[3] + 5*ep2[2] + ep2[1]); if(dot < halfPoint) step = (dot < c0Point) ? 1 : 3; else step = (dot < c3Point) ? 2 : 0; ep1[2] = dp[2] - stops[step]; lmask |= step<<4; dot = (dp[3] << 4) + (7*ep1[2] + 5*ep2[3] + ep2[2]); if(dot < halfPoint) step = (dot < c0Point) ? 1 : 3; else step = (dot < c3Point) ? 2 : 0; ep1[3] = dp[3] - stops[step]; lmask |= step<<6; dp += 4; mask |= lmask << (y*8); { int *et = ep1; ep1 = ep2; ep2 = et; } // swap } } return mask; } // The color optimization function. (Clever code, part 1) static void stb__OptimizeColorsBlock(unsigned char *block, unsigned short *pmax16, unsigned short *pmin16) { int mind = 0x7fffffff,maxd = -0x7fffffff; unsigned char *minp, *maxp; double magn; int v_r,v_g,v_b; static const int nIterPower = 4; float covf[6],vfr,vfg,vfb; // determine color distribution int cov[6]; int mu[3],min[3],max[3]; int ch,i,iter; for(ch=0;ch<3;ch++) { const unsigned char *bp = ((const unsigned char *) block) + ch; int muv,minv,maxv; muv = minv = maxv = bp[0]; for(i=4;i<64;i+=4) { muv += bp[i]; if (bp[i] < minv) minv = bp[i]; else if (bp[i] > maxv) maxv = bp[i]; } mu[ch] = (muv + 8) >> 4; min[ch] = minv; max[ch] = maxv; } // determine covariance matrix for (i=0;i<6;i++) cov[i] = 0; for (i=0;i<16;i++) { int r = block[i*4+0] - mu[0]; int g = block[i*4+1] - mu[1]; int b = block[i*4+2] - mu[2]; cov[0] += r*r; cov[1] += r*g; cov[2] += r*b; cov[3] += g*g; cov[4] += g*b; cov[5] += b*b; } // convert covariance matrix to float, find principal axis via power iter for(i=0;i<6;i++) covf[i] = cov[i] / 255.0f; vfr = (float) (max[0] - min[0]); vfg = (float) (max[1] - min[1]); vfb = (float) (max[2] - min[2]); for(iter=0;iter magn) magn = fabs(vfg); if (fabs(vfb) > magn) magn = fabs(vfb); if(magn < 4.0f) { // too small, default to luminance v_r = 299; // JPEG YCbCr luma coefs, scaled by 1000. v_g = 587; v_b = 114; } else { magn = 512.0 / magn; v_r = (int) (vfr * magn); v_g = (int) (vfg * magn); v_b = (int) (vfb * magn); } // Pick colors at extreme points for(i=0;i<16;i++) { int dot = block[i*4+0]*v_r + block[i*4+1]*v_g + block[i*4+2]*v_b; if (dot < mind) { mind = dot; minp = block+i*4; } if (dot > maxd) { maxd = dot; maxp = block+i*4; } } *pmax16 = stb__As16Bit(maxp[0],maxp[1],maxp[2]); *pmin16 = stb__As16Bit(minp[0],minp[1],minp[2]); } static int stb__sclamp(float y, int p0, int p1) { int x = (int) y; if (x < p0) return p0; if (x > p1) return p1; return x; } // The refinement function. (Clever code, part 2) // Tries to optimize colors to suit block contents better. // (By solving a least squares system via normal equations+Cramer's rule) static int stb__RefineBlock(unsigned char *block, unsigned short *pmax16, unsigned short *pmin16, unsigned int mask) { static const int w1Tab[4] = { 3,0,2,1 }; static const int prods[4] = { 0x090000,0x000900,0x040102,0x010402 }; // ^some magic to save a lot of multiplies in the accumulating loop... // (precomputed products of weights for least squares system, accumulated inside one 32-bit register) float frb,fg; unsigned short oldMin, oldMax, min16, max16; int i, akku = 0, xx,xy,yy; int At1_r,At1_g,At1_b; int At2_r,At2_g,At2_b; unsigned int cm = mask; oldMin = *pmin16; oldMax = *pmax16; if((mask ^ (mask<<2)) < 4) // all pixels have the same index? { // yes, linear system would be singular; solve using optimal // single-color match on average color int r = 8, g = 8, b = 8; for (i=0;i<16;++i) { r += block[i*4+0]; g += block[i*4+1]; b += block[i*4+2]; } r >>= 4; g >>= 4; b >>= 4; max16 = (stb__OMatch5[r][0]<<11) | (stb__OMatch6[g][0]<<5) | stb__OMatch5[b][0]; min16 = (stb__OMatch5[r][1]<<11) | (stb__OMatch6[g][1]<<5) | stb__OMatch5[b][1]; } else { At1_r = At1_g = At1_b = 0; At2_r = At2_g = At2_b = 0; for (i=0;i<16;++i,cm>>=2) { int step = cm&3; int w1 = w1Tab[step]; int r = block[i*4+0]; int g = block[i*4+1]; int b = block[i*4+2]; akku += prods[step]; At1_r += w1*r; At1_g += w1*g; At1_b += w1*b; At2_r += r; At2_g += g; At2_b += b; } At2_r = 3*At2_r - At1_r; At2_g = 3*At2_g - At1_g; At2_b = 3*At2_b - At1_b; // extract solutions and decide solvability xx = akku >> 16; yy = (akku >> 8) & 0xff; xy = (akku >> 0) & 0xff; frb = 3.0f * 31.0f / 255.0f / (xx*yy - xy*xy); fg = frb * 63.0f / 31.0f; // solve. max16 = stb__sclamp((At1_r*yy - At2_r*xy)*frb+0.5f,0,31) << 11; max16 |= stb__sclamp((At1_g*yy - At2_g*xy)*fg +0.5f,0,63) << 5; max16 |= stb__sclamp((At1_b*yy - At2_b*xy)*frb+0.5f,0,31) << 0; min16 = stb__sclamp((At2_r*xx - At1_r*xy)*frb+0.5f,0,31) << 11; min16 |= stb__sclamp((At2_g*xx - At1_g*xy)*fg +0.5f,0,63) << 5; min16 |= stb__sclamp((At2_b*xx - At1_b*xy)*frb+0.5f,0,31) << 0; } *pmin16 = min16; *pmax16 = max16; return oldMin != min16 || oldMax != max16; } // Color block compression static void stb__CompressColorBlock(unsigned char *dest, unsigned char *block, int mode) { unsigned int mask; int i; int dither; int refinecount; unsigned short max16, min16; unsigned char dblock[16*4],color[4*4]; dither = mode & STB_DXT_DITHER; refinecount = (mode & STB_DXT_HIGHQUAL) ? 2 : 1; // check if block is constant for (i=1;i<16;i++) if (((unsigned int *) block)[i] != ((unsigned int *) block)[0]) break; if(i == 16) { // constant color int r = block[0], g = block[1], b = block[2]; mask = 0xaaaaaaaa; max16 = (stb__OMatch5[r][0]<<11) | (stb__OMatch6[g][0]<<5) | stb__OMatch5[b][0]; min16 = (stb__OMatch5[r][1]<<11) | (stb__OMatch6[g][1]<<5) | stb__OMatch5[b][1]; } else { // first step: compute dithered version for PCA if desired if(dither) stb__DitherBlock(dblock,block); // second step: pca+map along principal axis stb__OptimizeColorsBlock(dither ? dblock : block,&max16,&min16); if (max16 != min16) { stb__EvalColors(color,max16,min16); mask = stb__MatchColorsBlock(block,color,dither); } else mask = 0; // third step: refine (multiple times if requested) for (i=0;i> 8); dest[2] = (unsigned char) (min16); dest[3] = (unsigned char) (min16 >> 8); dest[4] = (unsigned char) (mask); dest[5] = (unsigned char) (mask >> 8); dest[6] = (unsigned char) (mask >> 16); dest[7] = (unsigned char) (mask >> 24); } // Alpha block compression (this is easy for a change) static void stb__CompressAlphaBlock(unsigned char *dest,unsigned char *src,int mode) { int i,dist,bias,dist4,dist2,bits,mask; // find min/max color int mn,mx; mn = mx = src[3]; for (i=1;i<16;i++) { if (src[i*4+3] < mn) mn = src[i*4+3]; else if (src[i*4+3] > mx) mx = src[i*4+3]; } // encode them ((unsigned char *)dest)[0] = mx; ((unsigned char *)dest)[1] = mn; dest += 2; // determine bias and emit color indices // given the choice of mx/mn, these indices are optimal: // http://fgiesen.wordpress.com/2009/12/15/dxt5-alpha-block-index-determination/ dist = mx-mn; dist4 = dist*4; dist2 = dist*2; bias = (dist < 8) ? (dist - 1) : (dist/2 + 2); bias -= mn * 7; bits = 0,mask=0; for (i=0;i<16;i++) { int a = src[i*4+3]*7 + bias; int ind,t; // select index. this is a "linear scale" lerp factor between 0 (val=min) and 7 (val=max). t = (a >= dist4) ? -1 : 0; ind = t & 4; a -= dist4 & t; t = (a >= dist2) ? -1 : 0; ind += t & 2; a -= dist2 & t; ind += (a >= dist); // turn linear scale into DXT index (0/1 are extremal pts) ind = -ind & 7; ind ^= (2 > ind); // write index mask |= ind << bits; if((bits += 3) >= 8) { *dest++ = mask; mask >>= 8; bits -= 8; } } } static void stb__InitDXT() { int i; for(i=0;i<32;i++) stb__Expand5[i] = (i<<3)|(i>>2); for(i=0;i<64;i++) stb__Expand6[i] = (i<<2)|(i>>4); for(i=0;i<256+16;i++) { int v = i-8 < 0 ? 0 : i-8 > 255 ? 255 : i-8; stb__QuantRBTab[i] = stb__Expand5[stb__Mul8Bit(v,31)]; stb__QuantGTab[i] = stb__Expand6[stb__Mul8Bit(v,63)]; } stb__PrepareOptTable(&stb__OMatch5[0][0],stb__Expand5,32); stb__PrepareOptTable(&stb__OMatch6[0][0],stb__Expand6,64); } void stb_compress_dxt_block(unsigned char *dest, const unsigned char *src, int alpha, int mode) { static int init=1; if (init) { stb__InitDXT(); init=0; } if (alpha) { stb__CompressAlphaBlock(dest,(unsigned char*) src,mode); dest += 8; } stb__CompressColorBlock(dest,(unsigned char*) src,mode); } #endif // STB_DXT_IMPLEMENTATION #endif // STB_INCLUDE_STB_DXT_H